Sort by
Refine Your Search
-
Listed
-
Employer
- ICN2
- Institut de Físiques d'Altes Energies (IFAE)
- Fundació Hospital Universitari Vall d'Hebron- Institut de recerca
- Universitat de Barcelona
- Computer Vision Center
- Universitat Pompeu Fabra
- ASOCIACIÓN INSTITUTO DE INVESTIGACIÓN SANITARIA BIOGIPUZKOA
- Autonomous University of Madrid (Universidad Autónoma de Madrid)
- BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
- Barcelona School of Economics
- Centre for Demographic Studies (CED)
- Centre for Genomic Regulation
- Consejo Superior de Investigaciones Científicas
- ELISAVA
- Fundació Privada Institut d'Investigació Oncològica de Vall d'Hebron (VHIO)
- IMEDEA-CSIC-UIB
- Institut Català de Nanociència i Nanotecnologia
- Institut d'Investigacio Biomedica de Bellvitge (IDIBELL)
- Institut de Robòtica e Informàtica Industrial CSIC-UPC
- Universitat Autònoma de Barcelona
- Universitat Politècnica de Catalunya (UPC)- BarcelonaTECH
- Universitat Pompeu Fabra - Department / School of Engineering
- University Miguel Hernandez
- universitat de barcelona
- 14 more »
- « less
-
Field
-
-off companies. CONTEXT AND MISSION We are seeking a postdoc to join the Quantum Machine Learning team (QML-CVC) in beautiful Barcelona. The QML-CVC team (https://qml.cvc.uab.es /) is part of
-
the LAMP group at the Computer Vision Center (CVC), in Barcelona, Spain. The position is for 2-3 years and linked to the project “Foundations for Adaptive and Generalizable Deep Learning” (EXPLORA
-
based on neutral atom platforms, exploring both theoretical and experimental domains. Research will span quantum control, quantum-enhanced machine learning, and hybrid quantum-classical computation
-
of inflation and phase transitions in the early universe. We are developing new data analysis methods like the use of deep learning and the use of robust statistics. This work is naturally extended to studying
-
and qualifications within the corresponding category range. Work with interesting experimental science. Travelling to scientific singular infrastructures. Opportunity to gain experience learning first
-
of inflation and phase transitions in the early universe. We are developing new data analysis methods like the use of deep learning and the use of robust statistics. This work is naturally extended to studying
-
Infrastructure? No Offer Description Experimental postdoc. Develop experimental approaches to studying learning in individual mammalian cells, following two potential paths. First, by following up the studies
-
expertise in machine learning or computational modelling who are eager to advance conceptual innovation toward practical industrial deployment. Qualifications PhD in Computer Science, Machine Learning
-
=50415 Requirements Research FieldPhysicsEducation LevelPhD or equivalent Skills/Qualifications Advanced skills in Machine Learning and Artificial Intelligence Proficiency in spoken and written English
-
development of analytical solutions, data analysis and machine learning. Candidates should have a demonstrated record of scientific publications in international journals and participation in conferences