Sort by
Refine Your Search
-
Listed
-
Employer
- Nature Careers
- CNRS
- BRGM
- Institut Pasteur
- CEA
- The American University of Paris
- American University of Paris;
- European Magnetism Association EMA
- Université d'Artois
- Université de Bordeaux / University of Bordeaux
- UNIVERSITE PARIS CITE
- Université de Bordeaux
- Université de Caen Normandie
- Université de Montpellier
- Université de Pau et des Pays de l'Adour
- Université de Technologie de Belfort-Montbéliard
- École nationale des ponts et chaussées
- AGH - IMIR (Krakow)
- CNRS IRCELYON UMR 5256
- CPPM
- Center d'Etude des pathologies respiratoires
- ESRF - European Synchrotron Radiation Facility
- European Synchrotron Radiation Facility
- FEMTO-ST institute
- Géoazur laboratory
- Hult
- ICB - UMR 6303 - Laboratoire Interdiciplinaire Carnot de Bourgogne
- ICMMO
- IMT MINES ALES
- IRISA
- Ifremer
- Inserm
- Inserm / CNRS / Nantes University
- Institut Curie - Research Center
- Institut National Polytechnique de Toulouse
- Institut Neel
- Institut d'Electronique et de Télécommunications de Rennes
- Nantes University
- Télécom SudParis
- UNIVERSITE DE LILLE
- UNIVERSITY OF VIENNA
- Université Côte d'Azur
- Université Grenoble Alpes
- Université Marie et Louis Pasteur
- Université Paris 1 Panthéon-Sorbonne
- Université Paris-Saclay GS Biosphera - Biologie, Société, Ecologie & Environnement, Ressources, Agriculture & Alimentation
- Université Sorbonne Paris Nord
- Université Sorbonne Paris Nord, CNRS
- Université d'Orléans
- Université de Lorraine
- Université de Picardie - Jules Verne
- inserm 1105
- 42 more »
- « less
-
Field
-
proof of excellence in teaching. They should show expertise in their specific area and experience in Data Science and/or Software development, including academic publications and contributions
-
the existing highly optimized numerical simulation codes. The PDI Data Interface code coupling library is designed to fulfill this goal. The open-source PDI Data Interface library is designed and developed
-
identify optimal or near-optimal solutions. To address these challenges, CEA has developed A-DECA (Architecture Design Exploration and Configuration Automation), an in-house Electronic Design Automation (EDA
-
and interpretation. Prominent examples include time sequences on groups and manifolds, time sequences of graphs, and graph signals. The objectives The project aims to develop unsupervised online CPD
-
the development of more efficient online learning algorithms for manifold-valued data streams, with an initial focus on change-point detection, opening the door to new unsupervised data exploration methods. Next
-
behaviours. Various methodologies have been developed, including physics-informed ML approaches that use numerical modelling to create synthetic datasets (e.g. Tristani et al., 2025). Additionally, approaches
-
connected and valued on their academic journey. Internationally recognised research drives innovation in digital transformation, health, and sustainable development. This scientific progress is supported by
-
train robust machine learning (ML) algorithms without exchanging the actual data. The benefits of such a decentralized technology over personal and confidential data are multiple and already include some
-
, including image acquisition, processing, analysis, and interpretation Develop and validate new imaging techniques, algorithms, or software to improve diagnostic accuracy and patient outcomes Collaborate with
-
. The monitoring of telecommunications and energy production and distribution networks are characteristic examples of such time-critical applications. The project aims to propose unsupervised online CPD algorithms