Sort by
Refine Your Search
-
Listed
-
Category
-
Employer
- Universidade de Vigo
- BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
- ICN2
- BCBL - Basque Center on Cognition, Brain and Language
- Institute for bioengineering of Catalonia, IBEC
- Universitat Autonoma de Barcelona
- Agency for Management of University and Research Grants (AGAUR)
- IRTA
- Universidad de Alicante
- Universitat Politècnica de València
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)
- Fundació Hospital Universitari Vall d'Hebron- Institut de recerca
- IMDEA Networks Institute
- Institut Català de Nanociència i Nanotecnologia
- UNIVERSIDAD POLITECNICA DE MADRID
- University of A Coruña
- BARCELONA SUPERCOMPUTING CENTER
- BC3 - Basque Centre for Climate Change
- Catalan Institute for Water Research (ICRA)
- Center for Biological Research "Margarita Salas"-CSIC
- Centre for Genomic Regulation
- Computer Vision Center
- Computer Vision Center (CVC)
- FUNDACION DE INVESTIGACION BIOMEDICA HOSPITAL 12 DE OCTUBRE
- FUNDACIÓN PARA LA INVESTIGACIÓN MÉDICA APLICADA
- Fundación IMDEA Materiales
- Fundación Investigación del Cáncer Universidad de Salamanca
- ISGLOBAL
- Institute of Chemical Research of Catalonia ICIQ
- Integra Therapeutics
- Nature Careers
- Research Centre for the Management of Agricultural and Environmental Risks (CEIGRAM) - Universidad Politécnica de Madrid (UPM)
- UNAV
- Universitat Autònoma de Barcelona
- Universitat Pompeu Fabra
- Universitat de Barcelona
- Universitat de Lleida
- Universitat de Vic (UVIC - UCC)
- University of Seville
- noma de Barcelona
- 31 more »
- « less
-
Field
-
. Preliminary exposure to machine/deep learning, statistical modelling or generative AI. Application process: Interested candidates are invited to apply via the PHYNEST online platform by submitting a full CV, a
-
of multimedia datasets (voice, text, etc.). Development of predictive models for cognitive impairment and Parkinson's disease using signal processing and machine learning techniques. Development and debugging
-
FOR DRAWING UP OF PREDOCTORAL CONTRACTS FOR THE TRAINING OF DOCTORAL STUDENTS FUNDED BY THE UPV'S RESEARCH STRUCTURES – SUBPROGRAMME 2 (PAID-01-22) 119865 Development of machine-learning and graph-based models
-
STUDENTS FUNDED BY THE UPV'S RESEARCH STRUCTURES – SUBPROGRAMME 2 (PAID-01-22) 119977 Development of mathematical and machine-learning algorithms to support an intelligent, integrated system for biosafety
-
processing (computer vision & machine learning) Where to apply Website https://sede.uvigo.gal/public/catalog-detail/28364578 Requirements Research FieldEngineering » OtherEducation LevelMaster Degree
-
) and satellite platforms, and surface energy balance models will be used to obtain evapotranspiration (ET); computer vision and machine learning techniques will also be used to identify and count fruits
-
: Ph.D with postdoctoral experience in chemistry, physics, biophysics, biomedical engineering, nanotechnology, and related with focus in translational (nano)medicine. At least six years have passed since
-
participative digital platform that encourages users to contribute through crowdsourcing, oral interviews, or sharing privately held materials. Implementation of AI and machine learning techniques, including
-
obtained a University Degree and a Master’s Degree in biomedicine, epidemiology, computer sciences, environmental sciences, biostatistics, or a related discipline within the European Higher Education Area
-
Engineering). - Theoretical foundations of 6G RAN and autonomous systems o Proven knowledge of AI-native RAN systems. Indicative skills/experience: - Deep understanding of 5G/6G RAN architecture (O-RAN, NG-RAN