40 post-doc-parallel-computing PhD positions at Cranfield University in United Kingdom
Sort by
Refine Your Search
-
Aviation by 2050. This exciting doctoral project, in collaboration with Rolls-Royce, will develop innovative computer vision methods which when combined with optical flow velocimetry will enable imaging
-
architectures. From tamper detection to post-quantum countermeasures, you will explore state-of-the-art design techniques while participating in security assessments and collaborative reviews. The project
-
pressure to reduce both energy demand and chemical consumption. Project SandSCAPE, an Ofwat-funded programme, tackles this challenge by integrating purpose-built robots that skim slow sand filter beds while
-
We are looking for a highly motivated candidate to pursue a PhD programme titled "CFD-informed finite element analysis for thermal control in wire-arc directed energy deposition." This research
-
technological impact. Developing coatings that actively suppress thermal runaway propagation will significantly improve EV pack safety, potentially preventing catastrophic fires and extending evacuation time post
-
Develop practical, industry-transforming technology in this hands-on PhD program focused on immediate industrial applications. This exclusive opportunity places you directly at the interface between
-
for Security Operations Centres (SOCs) while pioneering strategies for quantum-era resilience. This project sits at the intersection of Artificial Intelligence, Cybersecurity, and Explainable Computing. It
-
and overseas fee. For 2025/26 entry this will be £22,714 per year of study. Diversity and Inclusion at Cranfield We are committed to fostering equity, diversity, and inclusion in our CDT program, and
-
This self-funded PhD opportunity explores assured multi-sensor localisation in 6G terrestrial and non-terrestrial networks (TN–NTN), combining GNSS positioning, inertial systems, and vision-based sensors to deliver resilient, high-accuracy positioning. The project sits at the intersection of...
-
: Computational Modelling: Employing simulation tools (e.g., GEANT4, light transport) to explore novel metamaterial designs, predict performance, and optimise key parameters such as timing resolution, light yield