Sort by
Refine Your Search
-
Listed
-
Employer
- Universitat de Barcelona
- ICN2
- Universitat Politècnica de Catalunya (UPC)- BarcelonaTECH
- Fundació Hospital Universitari Vall d'Hebron- Institut de recerca
- Institut de Físiques d'Altes Energies (IFAE)
- CRAG-Centre de Recerca Agrigenòmica
- Computer Vision Center
- Institute for bioengineering of Catalonia, IBEC
- Institute of Photonic Sciences
- Universitat Autònoma de Barcelona
- Universitat Pompeu Fabra
- Universitat Pompeu Fabra - Department / School of Engineering
- BC3 - Basque Centre for Climate Change
- Barcelona Supercomputing Center (BSC)
- CIC energiGUNE
- INSTITUTO DE ASTROFISICA DE CANARIAS (IAC) RESEARCH DIVISION
- AMADE research group
- Achucarro Basque Center for Neuroscience
- Aridditive
- Barcelona School of Economics
- CIC biomaGUNE
- CSIC
- Centre de Recerca en Agrigenòmica
- Centro ibérico para la investigación del almacenamiento de energía (CIIAE)
- FUNDACION INSTITUTO INVESTIGACION SANITARIA FUNDACION JIMENEZ DIAZ
- Fundació Privada Institut d'Investigació Oncològica de Vall d'Hebron (VHIO)
- Fundación IMDEA Materiales
- Fundación IMDEA Nanociencia
- ICFO - The Institute of Photonic Sciences
- IFIC
- IRTA
- IdiPAZ
- Institut d'Investigacio Biomedica de Bellvitge (IDIBELL)
- Institut de Recerca Biomèdica de Lleida (IRBLleida)
- Instituto de Neurociencias de Alicante, CSIC-UMH
- Josep Carreras Leukaemia Research Institute (IJC)
- Nature Careers
- Pompeu Fabra University
- Principe Felipe Research Center
- UNIVERSIDAD POLITECNICA DE MADRID
- Universidad Autónoma de Madrid
- University Miguel Hernandez
- 32 more »
- « less
-
Field
-
models, handling of biological samples, molecular and cell biology techniques, omics data analysis, and scientific writing. LanguagesENGLISHLevelGood Additional Information Eligibility criteria Indicate
-
trapping of biomolecules or cells, biochemistry and, microfluidic buffer handling techniques (preferred but not strictly required). Strong quantitative skills (signal processing, rheology models, Python
-
optimiser that accelerates both workflow efficiency and materials discovery. Main Tasks and responsibilities: AI4LSQUANT aims to accelerate quantum modelling by learning fast, accurate surrogates
-
adverse cardiac remodeling, including hypertrophy, fibrosis, and inflammation, and assess cardiac function in mouse models of heart failure using: Molecular biology techniques (RNA/protein extraction, RT
-
. Skills in modelling and analysis using machine learning tools. Experience in environmental and economic assessment and in feasibility and replicability studies. Scientific production (Q1) and technical
-
-like particles as candidates for dark matter. We perform tests of exotic models for Gravity beyond General Relativity, and cosmological measurements using GWs such as Hubble constant and probes
-
-like particles as candidates for dark matter. We perform tests of exotic models for Gravity beyond General Relativity, and cosmological measurements using GWs such as Hubble constant and probes
-
phenomenology in the Standard Model and beyond (including collider, flavour, Higgs and neutrino physics), QCD and strong interactions, lattice QCD, effective field theories in hadron and nuclear physics
-
the social and environmental implications of proximity models, combining spatial, mobility and socioeconomic data to develop indicators and tools for the toolkit. The candidate will also assume coordination
-
at CRAG (from basic science to applied research using plant experimental model systems, crops and farm animals) make extensive use of genomic technologies and large sets of genetic and genomic data (https