Sort by
Refine Your Search
-
Listed
-
Category
-
Employer
- ;
- Cranfield University
- University of Nottingham
- ; The University of Manchester
- ; Swansea University
- ; University of Birmingham
- University of Sheffield
- University of Cambridge
- ; University of Southampton
- ; University of Warwick
- ; Cranfield University
- ; Newcastle University
- ; University of Bristol
- ; University of Surrey
- ; City St George’s, University of London
- ; University of Nottingham
- ; Loughborough University
- ; The University of Edinburgh
- ; University of Sheffield
- Imperial College London
- University of Newcastle
- ; University of Exeter
- ; University of Oxford
- AALTO UNIVERSITY
- ; Brunel University London
- ; EPSRC Centre for Doctoral Training in Green Industrial Futures
- ; University of Cambridge
- ; University of East Anglia
- ; University of Greenwich
- ; University of Leeds
- ; University of Reading
- ; University of Strathclyde
- Abertay University
- Harper Adams University
- University of Oxford
- ; Aston University
- ; Coventry University Group
- ; Durham University
- ; Imperial College London
- ; Manchester Metropolitan University
- ; Royal Northern College of Music
- ; St George's, University of London
- ; University of Bradford
- ; University of Plymouth
- ; University of Sussex
- Aston University
- Heriot Watt University
- UNIVERSITY OF VIENNA
- University of Glasgow
- University of Liverpool
- 40 more »
- « less
-
Field
-
affect ignition behaviour. You’ll use advanced tools such as chemical kinetic modelling, multi-dimensional CFD simulations, and collaborate closely with experimental researchers. You will receive
-
, including high throughput experimentation, programming (e.g. in LabView, Matlab) and numerical modelling. They will be joining a thriving, inclusive Chemistry department with excellent facilities
-
models with a practical experimental platform. FTE: 1 (35 hours/week) Term: Fixed (18 months) The Centre for Ultrasonic Engineering (CUE) group of the Institute for Sensors, Signals and Communications
-
of advanced computational techniques. This research will integrate power system modelling, optimisation algorithms, and artificial intelligence (AI) techniques to develop an innovative framework for strategic
-
motion capture data collection involving patients would be advantageous, as would experience with musculoskeletal modelling software. Candidates with experience in clinical practice relating to human
-
insights into the robustness and resilience of land use decisions in an uncertain future. Relevant landscape models will be applied in selected case study countries to explore greenhouse gas flux and
-
behaviours of thin foils in vacuum and inert environments will be explored. Based on the results, a constitutive material model including the creep effect (time, temperature and load dependencies) will be
-
one of the following analysis techniques (multiple preferred): normative modelling, dimensionality reduction techniques, machine learning, deep-learning, state space modelling, advanced statistics
-
advantageous. Familiarity with mathematical modelling of power electronics circuits is also desirable. Funding Further information and other funding options . Informal Enquiries: s.neira@ed.ac.uk
-
; EPSRC Centre for Doctoral Training in Green Industrial Futures | Edinburgh, Scotland | United Kingdom | 3 months ago
of an accurate and generalisable density Equation of State model (EoS). This is especially challenging near the critical point and the Widom line, where there are large gradients in fluid properties. This project