-
of Zurich and Wageningen University & Research. The four-year STEPS project focusses on developing data-driven and machine learning methods to monitor CO2 and NOx emissions using the upcoming satellite
-
machine learning methods to monitor CO2 and NOx emissions using the upcoming satellite missions (e.g., CO2M, TANGO, Sentinel-4/5). Your research will contribute directly to monitoring global efforts
-
the use of hierarchical graph neural networks for modeling multi-scale urban energy systems. By combining advances in Physics-Informed Machine Learning (PIML) and Graph Neural Networks (GNNs) with real
-
the use of hierarchical graph neural networks for modeling multi-scale urban energy systems. By combining advances in Physics-Informed Machine Learning (PIML) and Graph Neural Networks (GNNs) with real