Sort by
Refine Your Search
-
Listed
-
Category
-
Employer
- Cranfield University
- University of East Anglia
- Imperial College London;
- The University of Manchester
- University of Exeter;
- University of Nottingham
- Loughborough University
- University of Birmingham;
- University of Cambridge;
- University of Exeter
- University of Sheffield
- AALTO UNIVERSITY
- Bangor University
- KINGS COLLEGE LONDON
- The University of Edinburgh;
- The University of Manchester;
- University of Birmingham
- University of Cambridge
- University of East Anglia;
- University of Warwick
- ;
- Edinburgh Napier University;
- Loughborough University;
- Oxford Brookes University
- University of Bristol
- University of Nottingham;
- University of Oxford;
- University of Sheffield;
- University of Surrey
- ; University of Exeter
- European Magnetism Association EMA
- King's College London
- King's College London;
- Liverpool John Moores University
- Manchester Metropolitan University;
- Newcastle University
- Swansea University
- Swansea University;
- The University of Edinburgh
- UCL
- Ulster University
- University of Bradford;
- University of Essex
- University of Hull;
- University of Leeds
- University of Liverpool
- University of Liverpool;
- University of Newcastle
- University of Oxford
- University of Plymouth
- University of Warwick;
- University of York;
- 42 more »
- « less
-
Field
-
for their employability in applications. Additionally, machine learning methods need to be applicable to high-dimensional and to noisy data that are typically encountered in real-world applications. The aim of this project
-
overuse injuries. Wearable sensors to quantify of the impact and benefit of sleep on the recovery, performance and overall wellbeing of athletes. Using big data and machine learning methods to identify
-
develop AI- and deep learning–based computer vision tools to automatically identify and quantify intertidal organisms. Beyond computer vision, it will leverage machine learning for large-scale, data-driven
-
new Wellcome-funded Imaging Machine learning And Genetics in Neurodevelopment (IMAGINE) lab, in the Research Department of Biomedical Computing. The post will benefit from the extensive and broad
-
is appropriately multi-disciplinary, at the interface between AI, environmental science, meteorology and epidemiology. Corresponding skills (machine learning, environmental and public health data
-
for computer, lab, and fieldwork costs necessary for you to conduct your research. There is also a conference budget of £2,000 and individual Training Budget of £1,000 for specialist training Project Aims and
-
with, cloud computing and virtualisation technologies Familiarity and hands-on experience with machine learning techniques desirable Desirable to have work experience (through internships or similar) in
-
sluggish diffusion kinetics of HEAs make them excellent candidates for resisting oxidation and corrosion in high-temperature steam. Guided by thermodynamic modelling and machine learning, we will identify
-
, Psychology, or a related field, to be awarded before March 1st, 2026. Essential skills include an ability to code (e.g., Python, R) and interpret data, knowledge of machine learning and statistics, and a
-
AI techniques for damage analysis in advanced composite materials due to high velocity impacts - PhD
intelligence, particularly in computer vision and deep learning, offer an opportunity to automate and enhance damage assessment by learning patterns from multimodal data. This research seeks to bridge the gap