Sort by
Refine Your Search
-
Listed
-
Category
-
Employer
- ;
- Cranfield University
- ; The University of Manchester
- ; University of Nottingham
- University of Nottingham
- ; University of Warwick
- ; City St George’s, University of London
- ; University of Exeter
- ; Swansea University
- ; Newcastle University
- ; University of Leeds
- ; University of Oxford
- ; University of Surrey
- ; Loughborough University
- ; The University of Edinburgh
- ; University of Birmingham
- ; University of Bristol
- ; University of Reading
- ; University of Southampton
- Abertay University
- Imperial College London
- University of Cambridge
- ; Aston University
- ; Brunel University London
- ; Coventry University Group
- ; Cranfield University
- ; Durham University
- ; EPSRC Centre for Doctoral Training in Green Industrial Futures
- ; UCL
- ; UWE, Bristol
- ; University of East Anglia
- ; University of Greenwich
- ; University of Strathclyde
- ; University of Sussex
- Harper Adams University
- University of Liverpool
- University of Newcastle
- 27 more »
- « less
-
Field
-
for greater precision. Machine learning (ML) algorithms will analyse these datasets to deliver a scalable, cost-effective system, validated through field trials and enhanced by contributions from four
-
This large-scale ecological project investigates the barriers and drivers of post-fire forest recovery. With climate change and the spread of forest fires to new areas, it is important to investigate the conditions that support forest recovery after a fire. The study areas can be defined using...
-
optimization of batteries against the swelling phenomenon. This project aims at developing scientific machine learning approaches based on the Bayesian paradigm and electrochemical-thermomechanical models in
-
Project title: Privacy/Security Risks in Machine/Federated Learning systems Supervisory Team: Dr Han Wu Project description: In the wake of growing data privacy concerns and the enactment
-
. Alternative approaches are graph-based molecule reaction space sampling and generative machine learning as they provide a path to new synthetic data that can form the basis for a large-scale database of
-
of dehydration using a low-power radio-frequency (RF) sensor. The research objectives include design optimization to improve wearability, robust data acquisition using machine learning and establishing correlation
-
Characterisation" "Data Science and Machine Learning in Materials" "Plastics Recycling and Circular Economy" Research theme: "Materials Characterisation" "Data Science and Machine Learning in Materials" "Plastics
-
your suitability with evidence of the following: Have backgrounds in computer science (or engineering), system engineering, or physics/mathematics. Knowledgeable in machine learning techniques (had
-
, and space hardware. This PhD research aims to develop a comprehensive Mode Selection Framework for Reduced Order Modelling (ROM) in Structural Dynamics—using machine learning to build robust
-
participants Ideally, practical skills in one of (a) programming, (b) machine learning, and/or (c) design Responsibilities Developing and conducting novel research projects individually and on teams Developing a