Sort by
Refine Your Search
-
Listed
-
Program
-
Employer
- UNIVERSIDAD POLITECNICA DE MADRID
- Fundació per a la Universitat Oberta de Catalunya
- Fundació Hospital Universitari Vall d'Hebron- Institut de recerca
- Universitat Politècnica de Catalunya (UPC)- BarcelonaTECH
- Computer Vision Center
- Universidad de Alicante
- Universitat de Barcelona
- Autonomous University of Madrid (Universidad Autónoma de Madrid)
- CIC energiGUNE
- Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)
- Centre for Genomic Regulation
- INSTITUTO DE ASTROFISICA DE CANARIAS (IAC) RESEARCH DIVISION
- Institut de Físiques d'Altes Energies (IFAE)
- Institute for bioengineering of Catalonia, IBEC
- BARCELONA SUPERCOMPUTING CENTER
- BCBL - Basque Center on Cognition, Brain and Language
- Barcelona Supercomputing Center (BSC)
- FUNDACIÓ ESADE - UNIVERSITAT RAMON LLULL
- FUNDACIÓN CANARIA PARQUE CIENTÍFICO TECNOLÓGICO
- ICN2
- IRTA
- Institute of Photonic Sciences
- Instituto de Neurociencias de Alicante, CSIC-UMH
- Technical University of Cartagena
- Universidad Miguel Hernandez
- Universidad de Alcalá
- Universitat Pompeu Fabra
- Universitat Pompeu Fabra - Department / School of Engineering
- Universitat Ramon Llull Fundació
- University of A Coruña
- 20 more »
- « less
-
Field
-
or equivalent Skills/Qualifications A Bachelor's Degree or an equivalent in Computer Science, Telecommunication Engineering, or a related field with a strong academic background in Machine learning, Natural
-
analysis will not be considered. Programming Skills in Python, R, MATLAB Prior knowledge of Statistics and Machine Learning Competencies and skills: Communication, Teamwork and collaboration, Commitment
-
for Data-Driven Decisions at Esade is seeking to hire a Research Assistant to contribute to research projects related to machine learning. While the Esade D3 members conduct empirical research in different
-
metrics. - Uso de técnicas de aprendizaje máquina/profundo y técnicas de segmentación aplicado al procesamiento de imágenes y vídeo / - Use segmentation and machine/deep learning techniques applied to image
-
this process. Responsibilities Generate a database of phenotypic traits across all eukaryotes. Generate a database of gene content across all eukaryotes. Train Machine Learning models to predict phenotypic
-
sustainability of biomaterial manufacturing through safe design methods, machine learning, and predictive life cycle assessment as well as developing machine learning and hybrid digital modeling methods, combining
-
: • Graph-based learning and community detection: Identify cohesive and antagonistic groups within signed networks. • Machine learning and network embeddings: Measure consensus, polarity, and opinion shifts
-
scientific infrastructure (e.g. Observatorio del Roque de los Muchachos) Hands-on training in cutting-edge techniques, from detector R&D to advanced data analysis and machine learning. Attendance
-
(TensorFlow, PyTorch, scikit-learn, Pandas). Knowledge of machine and deep learning methods and techniques, including training, adjustment and development of language models and LLMs. Generative AI techniques
-
de técnicas de aprendizaje automático (ML/DL) aplicado a imágenes. / Proven experience in the use of machine learning techniques (ML/DL) applied to images. Experiencia demostrable en el desarrollo de