Sort by
Refine Your Search
-
Listed
-
Category
-
Program
-
Employer
- INESC TEC
- Universidade de Coimbra
- FEUP
- Instituto Pedro Nunes
- FCiências.ID
- INESC ID
- Associação Fraunhofer Portugal Research
- NOVA.id.FCT- Associação para a Inovação de Desenvolvimento da FCT
- Instituto Superior Técnico
- University of Beira Interior
- University of Porto
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento _IST-ID
- Aveiro University
- ISCTE - Instituto Universitário de Lisboa
- Institute of Systems and Robotics-Faculty of Sciences and Technology of the University of Coimbra
- Instituto Politécnico de Setúbal
- Instituto Superior de Economia e Gestão
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial
- Instituto de Telecomunicações
- Nova School of Business and Economics
- Politécnico de Leiria
- University of Minho
- CMU Portugal Program - FCT
- COFAC
- Centro de Computação Grafica
- FCT NOVA - UNIDEMI
- Faculdade de Ciências e Tecnologia
- Faculdade de Medicina Veterinária
- INESC MN
- Institute of Systems and Robotics, Faculty of Sciences and Technology of the University of Coimbra
- Instituto Politécnico de Bragança
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3S)
- NOVA Institute for Medical Systems Biology
- Nature Careers
- RAEGE-Az
- Seed Robotics
- UNINOVA - Instituto de Desenvolvimento de Novas Tecnologias
- Universidade Nova de Lisboa
- Universidade do Minho - ISISE
- iBET - Instituto de Biologia Experimental e Tecnológica
- 30 more »
- « less
-
Field
-
(IMI, IMT, IRS, Census) with descriptive methods and causal econometric techniques. It will use various approaches to identify vacant dwellings, including machine learning algorithms to visually detect
-
NOVA Institute for Medical Systems Biology (NIMSB) announces Four Independent Group Leader positions
for integration of large-scale omics datasets, and application of machine learning and statistical modelling for decipher cell and tissue behaviour, elucidate disease mechanisms, and enable patient stratification
-
within the framework of project 2023.14874.PEX - “anomaly - Machine Learning-based Models for Advanced Anomaly Detection in Dam Structural Health Monitoring”, with DOI https://doi.org/10.54499/2023.14874
-
R&D units. In what concerns the admission requirements for this research grant in particular: - Current enrolment in a master’s-level programme (MSc or equivalent); - Proven foundation in machine
-
testing. The work is expected to strengthen the reliability and predictive accuracy of SGB and related machine learning methods, i.e., those that share common algorithmic steps, in contaminated settings. 4
-
wastewater treatment plants, with the following main objectives: 1 - Model calibration through Machine Learning methodologies using process data. 2 - Development of a multimodal online sustainability
-
sequencing, proteomics, and metabolomics; interpretation of datasets and clinical data using advanced statistical methods and machine learning algorithms to identify correlations between molecular alterations