Sort by
Refine Your Search
-
Listed
-
Category
-
Employer
- ;
- Cranfield University
- ; The University of Manchester
- ; University of Warwick
- University of Cambridge
- University of Sheffield
- ; Brunel University London
- ; Swansea University
- ; The University of Edinburgh
- ; University of Birmingham
- ; University of Oxford
- ; University of Surrey
- ; Cranfield University
- ; EPSRC Centre for Doctoral Training in Green Industrial Futures
- ; University of Exeter
- ; University of Leeds
- ; University of Sheffield
- ; University of Southampton
- Brunel University
- Imperial College London
- University of Nottingham
- 11 more »
- « less
-
Field
-
and corrosion in aqueous CO2-containing environments (such as geothermal systems) is the continuous injection of chemical inhibitors into the process fluid. These inhibitors can function through a
-
; EPSRC Centre for Doctoral Training in Green Industrial Futures | Edinburgh, Scotland | United Kingdom | about 2 months ago
of an accurate and generalisable density Equation of State model (EoS). This is especially challenging near the critical point and the Widom line, where there are large gradients in fluid properties. This project
-
Research theme: Fluid Mechanics, Machine Learning, Ocean Waves, Ocean Environment, Renewable Energy, Nonlinear Systems How to apply: How many positions: 1 Funding will cover UK tuition fees and tax
-
Fully-funded PhD Studentship: Adaptive Mesh Refinement for More Efficient Predictions of Wall Boiling Bubble Dynamics This exciting opportunity is based within the Fluids and Thermal Engineering
-
overcomes the geographic limitations of conventional systems, enabling global scalability and accessibility. Using advanced computational fluid dynamics (CFD) approaches, the project is aimed at advancing
-
research team. Good knowledge and experience in heat and mass transfer is essential and proficiency in the use of Computational Fluid Dynamics will be considered an advantage. The student will benefit from
-
fluid or as individual particles; moreover, complex chemical reactions can occur between species in the plasma. Modelling a plasma is accordingly a very complex and challenging task. The objective
-
Current modelling and simulations require either generic assumptions to be made for fluid dynamic based modelling leading to inaccuracies between modelled and experimental data or, intense
-
nanosheets, nanotubes, etc) or hybrid (e.g. boron carbon nitride). Similarly, while water is the most studied coolant liquid, realistic applications involve dielectric fluids (e.g. benzene, pentane). Molecular
-
hypothesis of the proposed research is by use of intelligent and integrated control of the input power electronics, fluid handling, and thermal control in a holistic approach, current efficiency and lifespan