Sort by
Refine Your Search
-
Listed
-
Category
-
Country
-
Employer
- NTNU - Norwegian University of Science and Technology
- ;
- Cranfield University
- Chalmers University of Technology
- University of Nottingham
- ; University of Oxford
- ; University of Warwick
- Curtin University
- DAAD
- Ghent University
- RMIT University
- Technical University of Denmark
- ; Imperial College London
- ; Swansea University
- ; The University of Edinburgh
- ; University of Birmingham
- ; University of Bristol
- ; University of Leeds
- ; University of Nottingham
- ; University of Southampton
- ; University of Sussex
- Empa
- Forschungszentrum Jülich
- Helmholtz-Zentrum Geesthacht
- Institut Pasteur
- Nature Careers
- University of Adelaide
- University of Antwerp
- University of Cambridge
- University of Copenhagen
- University of Groningen
- University of Nebraska–Lincoln
- University of Southern Queensland
- University of Twente
- 24 more »
- « less
-
Field
-
4-year D.Phil. studentship Supervisors: Dr Simone Falco, Prof Daniel Eakins Classic finite elements approach (FEA) approximate the shape of the model using elements with planar faces, therefore
-
degree in Engineering and have an interest in and/or a good understanding of numerical modelling and testing of structures. Prior knowledge of finite element methods and programming (e.g. C++, Python
-
by using commercial software such as Ansys, Abaqus, SolidWorks, etc. Experience in computational fluid dynamics (CFD) modelling or finite element (FE) modelling; Fundamental knowledge in fluid
-
programming Merits: Experience in modelling erosion problems Understanding of critical state soil mechanics, elasto-plastic and elasto-viscoplastic models Experience in numerical analyses (using finite elements
-
of the (computational) mechanics of solids and the finite element method and/or spectral solvers Practical experience in at least one programming language (preferably Python) and experience with the use of Unix/Linux
-
techniques — as well as theoretical and computational techniques that may include finite element methods, crystal plasticity theory, damage theory, molecular dynamics and advanced multiscale modelling methods
-
. Develop analytical and finite element (FE) models to investigate the extent and sources of nonlinear behaviour in LGSs. 3. Develop novel control strategies to stabilise LGS shape, orbit & attitude
-
code based on Modified Newtonian aerodynamics and a coupled, nonlinear thermo-structural finite element solver. Supervisors: Professor Matthew Santer, Dr. Paul Bruce. Learning opportunities: You will
-
Some experience with numerical simulations such as the Finite Element Method (FEM) and Multi-Body Simulation (MBS) is a plus. We offer: a fascinating understanding at mobility in general with a
-
utilise numerical techniques including the finite element method to describe biofluid flow and deformation in the human brain tissue. Parameters are inferred from clinical data including medical images