-
partners and test centres. Physical testing, such as controlled spin-burst experiments, will complement advanced finite element analysis (FEA) in evaluating failure behaviour. Who we are looking
-
quantification. The interrelation of these three topic areas is increasingly important for future lightweight and sustainable composite structures. The ideal PhD candidate will enjoy working on finite-element
-
(conductivity, heat capacity, flame resistance). Advanced finite element modelling will then correlate microstructural features to heat-transfer performance. The candidate will design and build a burner-rig test
-
fields, and risk damaging the part during fabrication. Finite element analysis (FEA) models, while capable of delivering detailed spatiotemporal distributions of thermal variables, suffer from limited
-
simulations and finite element analysis, with high-heat flux electron beam experiments. The research will simulate and replicate steady, cyclic, and transient thermal loads to better understand PFM behaviour
-
/or dynamic analysis of mechanical/robotic systems •Ability to use finite element modelling and to simulate complex mechatronics •Ability to implement control and kinematics with hardware-in-the-loop
-
of mechanical and robotic systems •Ability to use finite element modelling and to simulate complex mechatronics •Ability to implement control and kinematics with hardware-in-the–loop •Background with relevant