Sort by
Refine Your Search
-
Listed
-
Category
-
Country
-
Employer
- Cranfield University
- ;
- ; Swansea University
- ; The University of Manchester
- University of Nottingham
- University of Cambridge
- AALTO UNIVERSITY
- University of Sheffield
- ; Cranfield University
- ; Brunel University London
- ; University of Birmingham
- ; University of Bristol
- ; University of Surrey
- Imperial College London
- ; City St George’s, University of London
- ; Manchester Metropolitan University
- ; The University of Edinburgh
- ; University of Cambridge
- ; University of Sheffield
- ; University of Southampton
- ; University of Sussex
- Abertay University
- ; Aston University
- ; Coventry University Group
- ; Durham University
- ; Loughborough University
- ; Newcastle University
- ; University of Copenhagen
- ; University of Greenwich
- ; University of Nottingham
- ; University of Oxford
- ; University of Strathclyde
- ; University of Warwick
- Aston University
- UNIVERSITY OF SOUTHAMPTON
- University of Manchester
- University of Newcastle
- University of Oxford
- Utrecht University
- 29 more »
- « less
-
Field
-
Project advert This research will investigate how aquatic macroinvertebrate assemblages and sediment regimes change following the introduction of Large Woody Structures (LWS) into river systems
-
Research theme: Dynamics How many positions: 1 This 4 year PhD project is open to home students. The successful applicant will be awarded a tax free annual stipend set at the UKRI rate (£19,237 for
-
The composites industry is under increasing pressure to transition towards a truly circular economy. As growing demand continues to widen the supply gap, we must recover untapped value that would
-
Identifying and validating models for complex structures featuring nonlinearity remains a cutting-edge challenge in structural dynamics, with applications spanning civil structures, microelectronics
-
, dynamical systems and statistical physics. The candidate will be jointly supervised by the Coventry team Dr Fei He and the Stellenbosch team Prof. Francesco Petruccione . This project will contribute
-
of tomorrow and creating novel solutions to major global challenges. Our community is made up of 120 nationalities, 14 000 students, 400 professors and close to 5000 faculty and staff working on our dynamic
-
Computational verification of high-speed multi-material flows, where physical experimentation is highly limited, is seen as critical by the defence Sector (source: the UK Atomic Weapons
-
to generate tools and techniques to simulate HIV infection dynamics using a multiscale agent-based modelling technique (cells, viruses, drugs, antibodies, human lymph system, seconds, days, years). This project
-
, and dynamic individual who is a team worker, has a positive outlook, and is adaptable and flexible in their working methods. It is also essential that you are highly experienced in setting up continuous
-
Computational verification of high-speed multi-material flows, where physical experimentation is highly limited, is seen as critical by the Defence Sector (source: the UK Atomic Weapons