Sort by
Refine Your Search
-
Listed
-
Category
-
Program
-
Employer
- CNRS
- Nature Careers
- Inria, the French national research institute for the digital sciences
- Université Grenoble Alpes
- Aix-Marseille Université
- IRIT, Université de Toulouse
- Télécom Paris
- UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE
- Université Claude Bernard Lyon 1
- Université Savoie Mont Blanc
- Université de Bordeaux / University of Bordeaux
- École nationale des ponts et chaussées
- American University of Paris;
- CEA
- Ecole Centrale de Lyon
- Ecole Normale Supérieure de Lyon
- FRANCE ENERGIES MARINES
- IMT - Atlantique
- IMT - Institut Mines-Télécom
- IMT MINES ALES
- IMT Mines Ales
- IRISA
- Institut National Polytechnique de Toulouse
- Institut Neel
- Institut Pasteur
- Institut of Mathematics of Marseille
- LE STUDIUM LOIRE VALLEY INSTITUTE FOR ADVANCED STUDIES
- Laboratoire National de Métrologie et d'Essais - LNE
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), UMR CNRS/École Polytechnique,
- NIMES UNIVERSITE
- Nantes Université
- The American University of Paris
- Télécom SudParis
- Universite de Montpellier
- Université Grenoble Alpes, laboratoire TIMC, équipe GMCAO
- Université Marie et Louis Pasteur
- Université Toulouse III Paul Sabatier
- Université d'Orléans
- Université de Caen Normandie
- Université de Lorraine
- Université de Montpellier
- Université de Pau et des Pays de l'Adour
- Université de Technologie de Belfort-Montbéliard
- Université de Toulouse
- université Strasbourg
- École Normale Supéireure
- 36 more »
- « less
-
Field
-
9 Sep 2025 Job Information Organisation/Company CNRS Department Laboratoire d'analyse et d'architecture des systèmes Research Field Engineering Computer science Mathematics Researcher Profile First
-
France Application Deadline 30 Nov 2025 - 23:59 (Europe/Paris) Type of Contract Temporary Job Status Full-time Offer Starting Date 1 Apr 2026 Is the job funded through the EU Research Framework Programme
-
the technical side, we aim at combining statistical latent variable models with deep learning algorithms to justify existing results and allow a better understanding of their performances and their limitations
-
research work will be to devise efficient algorithms for source separation in DAS measurements. Issues such as large data volumes that can exceed 1 To per day and per fiber, instrument noise, complex nature
-
observed in Drosophila larvae. This interdisciplinary project combines biology, neuroscience, and computational modelling to understand how the larva’s body’s physical properties influence its motor control
-
analyzed. The tensor model structure estimated by suitable optimization algorithms, such as that recently developed in [GOU20], will be considered as a starting point. • Exploiting data multimodality and