Sort by
Refine Your Search
-
-scale screens to study fundamental principles in molecular and complex trait genetics using microbes as model systems. Our core technology MAGESTIC (https://doi.org/10.1038/nbt.4137 ), a CRISPR/Cas9-based
-
datasets. Your focus will be on implementing and training generative models to decompose cylindrical projections. You will solve and refine the structures from the resulting decomposed data. You will map
-
member's task is strongly intertwined with the tasks of the other team members. You will design, train and apply generative models that learn how to complete missing wedges in the reciprocal space of crystal
-
-scale screens to study fundamental principles in molecular and complex trait genetics using microbes as model systems. Our core technology MAGESTIC (https://doi.org/10.1038/nbt.4137 ), a CRISPR/Cas9-based
-
diverse academic backgrounds to contribute to our projects in areas such as: Network Security, Information Assurance, Model-driven Security, Cloud Computing, Cryptography, Satellite Systems, Vehicular
-
diverse academic backgrounds to contribute to our projects in areas such as: Network Security, Information Assurance, Model-driven Security, Cloud Computing, Cryptography, Satellite Systems, Vehicular
-
diverse academic backgrounds to contribute to our projects in areas such as: Network Security, Information Assurance, Model-driven Security, Cloud Computing, Cryptography, Satellite Systems, Vehicular
-
diverse academic backgrounds to contribute to our projects in areas such as: Network Security, Information Assurance, Model-driven Security, Cloud Computing, Cryptography, Satellite Systems, Vehicular
-
diverse academic backgrounds to contribute to our projects in areas such as: Network Security, Information Assurance, Model-driven Security, Cloud Computing, Cryptography, Satellite Systems, Vehicular
-
are seeking a motivated and enthusiastic colleague with strong computational skills in the analyses of complex data sets to join our teams. About the project We have generated advanced brain on chip models