Sort by
Refine Your Search
-
Listed
-
Employer
- Nature Careers
- Technical University of Munich
- Leibniz
- Forschungszentrum Jülich
- Free University of Berlin
- Heidelberg University
- University of Tübingen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
- Helmholtz-Zentrum Berlin für Materialien und Energie
- Helmholtz-Zentrum Dresden-Rossendorf - HZDR - Helmholtz Association
- Max Planck Society
- Technische Universität München
- WIAS Berlin
- Academic Europe
- Deutsches Zentrum für Neurodegenerative Erkrankungen
- European Magnetism Association EMA
- Fraunhofer-Gesellschaft
- Friedrich Schiller University Jena
- GFZ Helmholtz-Zentrum für Geoforschung
- Helmholtz-Zentrum Geesthacht
- Helmholtz-Zentrum für Infektionsforschung
- King's College London
- Leibniz Institute for Neurobiology
- Max Planck Institute for Astronomy, Arua, Uganda
- Max Planck Institute for Astronomy, Heidelberg
- Max Planck Institute for Biology Tübingen, Tübingen
- Max Planck Institute for Brain Research, Frankfurt am Main
- Max Planck Institute for Demographic Research (MPIDR)
- Max Planck Institute for Extraterrestrial Physics, Garching
- Max Planck Institute for Human Development, Berlin
- Max Planck Institute for Molecular Biomedicine, Münster
- Max Planck Institute for Nuclear Physics, Heidelberg
- Max Planck Institute for Physics, Garching
- Max Planck Institute for Plasma Physics (Greifswald), Greifswald
- Max Planck Institute for Radio Astronomy, Bonn
- Max Planck Institute for Sustainable Materials GmbH, Düsseldorf
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
- Ruhr University Bochum
- Universitaetsklinikum Erlangen
- University of Bonn
- University of Duisburg-Essen
- University of Greifswald
- University of Paderborn
- 33 more »
- « less
-
Field
-
management. Our group combines empirical work (with experiments in the field and in the lab) and modelling techniques. The focus of this postdoctoral position is the generation of empirical datasets
-
The Network Analysis and Modelling group investigates how genetic variation shapes gene regulation, protein function, and, ultimately, observable plant traits. Using machine learning and network
-
(including the doctoral dissertation) Strong methodological training in quantitative survey and experimental research (Additional asset: experience with using large language models in surveys) Proficiency in
-
(with experiments in the field and in the lab) and modelling techniques. The focus of this postdoctoral position is the generation of empirical datasets for livestock systems in East Africa, and in
-
zusammen mit insgesamt elf Postdoc WissenschaftlerInnen aktiv am wissenschaftlich-akademischen Diskurs zur aktuellen Forschungs- und Entwicklungsfragen im Bereich des Grünen Wasserstoffs teilnehmen. Von
-
' prognosis or treatment decisions. For modeling, we use both public and proprietary clinical and research data greatly enriched by our own repository of digital pathology images. A further focus lies on
-
at local, regional, national and European scales across the terrestrial, freshwater and marine realms. For this, a suite of thematic VREs will be developed that allow an easy-to-use application of models
-
will be tested and verified with applications from geodynamics. For more information consider the job description here . Tasks Tasks in the project include the efficient implementation of new models
-
focus on deep networks for solving inverse problems, learning robust models from few and noisy samples, and DNA data storage. The position is in the area of machine learning, with a focus on deep learning
-
communication system are modeled using information theory. We wish to investigate how interleaving can reduce the overhead and computational load due to coding coefficients required in classical linear random