Sort by
Refine Your Search
-
Listed
-
Employer
- CNRS
- Nature Careers
- Inria, the French national research institute for the digital sciences
- Mediterranean Institute of Oceanography
- Université de Bordeaux
- Université de Montpellier
- European Synchrotron Radiation Facility
- Institut Pasteur
- UNIVERSITE ANGERS
- UNIVERSITE PARIS CITE
- Université Paris-Saclay GS Physique
- Université de Lorraine
- American University of Paris;
- BRGM
- CEA
- CEA/DRF
- CNRS LABORATOIRE EM2C
- CPPM
- ESRF - European Synchrotron Radiation Facility
- Ecole Normale Supérieure
- FEMTO-ST institute
- Géoazur laboratory
- ICB - UMR 6303 - Laboratoire Interdiciplinaire Carnot de Bourgogne
- IMT MINES ALES
- IMT Mines Ales
- IMT Nord Europe
- INSERM DR IF CENTRE NORD
- IRISA
- Institut Curie - Research Center
- LARIS Angers OR LJK Greonble
- LPCT - CNRS, Université de Lorraine
- Laboratoire National de Métrologie et d'Essais - LNE
- The American University of Paris
- UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE
- Universite de Poitiers
- Université Côte d'Azur
- Université Grenoble Alpes
- Université Paris Cité
- Université Sorbonne Paris Nord
- Université d'Artois
- Université d'Orléans
- Université de Caen Normandie
- Université de Pau et des Pays de l'Adour
- Université de Picardie - Jules Verne
- École nationale des ponts et chaussées
- 35 more »
- « less
-
Field
-
research work will be to devise efficient algorithms for source separation in DAS measurements. Issues such as large data volumes that can exceed 1 To per day and per fiber, instrument noise, complex nature
-
through text, images, networks, … A similar situation can be encountered in the context of medical data, where the data types may be even more large. It is therefore of strong interest to be able to analyze
-
to perceive their environment because this sensor can produce precise depth measurement at a high density. LiDARs measurements are generally sparse, mainly geometric and lacks semantic information. Therefore
-
data that mimics key characteristics observed in experimental recordings. This approach will involve an inference phase to identify large-scale parameters characteristic of larva populations. Crucially