Sort by
Refine Your Search
- 
                Listed
 - 
                Employer
- CNRS
 - Inria, the French national research institute for the digital sciences
 - Nature Careers
 - Aix-Marseille Université
 - Université Savoie Mont Blanc
 - INSERM
 - Institut Pasteur
 - Mediterranean Institute of Oceanography
 - Nantes Université
 - Université Grenoble Alpes
 - Université de Caen Normandie
 - Télécom Paris
 - Université Claude Bernard Lyon 1
 - Université Marie et Louis Pasteur
 - Aix-Marseille University
 - BENAJIBA team - INSERM U1342 - Saint-Louis Research Institute
 - CEA-Saclay
 - CNRS-ENS-UCBL
 - Centre de Nanosciences et de Nanotechnologies
 - European Magnetism Association EMA
 - FRANCE ENERGIES MARINES
 - French National Research Institute for Sustainable Development
 - Grenoble INP - Institute of Engineering
 - Gustave Roussy Cancer Campus
 - IFP Energies nouvelles (IFPEN)
 - INRAE
 - INSERM U1183
 - Inserm
 - Institut Pasteur de Lille
 - Institut of Mathematics of Marseille
 - LEM3
 - La Rochelle Université
 - Laboratoire d'Astrophysique de Marseille
 - Le Mans Université
 - SORBONNE UNIVERSITE
 - UNIVERSITE PARIS CITE
 - Universite de Montpellier
 - University of Montpellier
 - Université Bourgogne Europe
 - Université Paris Cité
 - Université de Bordeaux / University of Bordeaux
 - Université de Strasbourg
 - Université de Toulouse - LGC
 - Université de montpellier
 - École nationale des ponts et chaussées
 - 35 more »
 - « less
 
 - 
                Field
 
- 
                
                
                
cell tracking to identify the progenitors of these cells during regeneration. • Develop and apply a recombinase-based cell barcoding strategy to trace cell lineages during leg growth and regeneration
 - 
                
                
                
Research Framework Programme? Not funded by a EU programme Is the Job related to staff position within a Research Infrastructure? No Offer Description The objective of this postdoctoral position, in
 - 
                
                
                
, such as Bayesian approaches and fossilized birth–death models, to reconstruct robust phylogenies and estimate divergence times. It also investigates macroevolutionary dynamics, including variation in
 - 
                
                
                
associated with phenotypic (biomechanical and metabolomics) traits. Estimate locus-specific effect sizes and quantifying genetically-driven phenotypic variations. Develop Bayesian models and/or deep learning
 - 
                
                
                
Description You will: * Lead MEG head-cast data collection for a visuomotor reaching/interception study, ensuring robust synchronization with video-based kinematics and eye-tracking, and enforce rigorous
 - 
                
                
                
applications. The project aims to address fundamental theoretical questions related to the representation and measurement of the polarization state, as well as the use of Bayesian and/or statistical learning
 - 
                
                
                
appreciated. - Advanced statistical modeling (GLMMs, state-space models, stochastic Bayesian programming) in R - Experience with bioinformatics, if possible experience in the use of RAD-seq and/or lcWGS data
 - 
                
                
                
, clustering analyses, propagating location and other uncertainties...) of mid-ocean ridge catalogs, using standard, Bayesian and machine learning techniques. ⁃ Implement methodologies that improve estimates
 - 
                
                
                
of London Cancer Institute. Objectives: The aim of the project is to study chromatin remodeling defects in cancer. The successful candidate will be responsible for designing and executing experiments
 - 
                
                
                
(fMRI), and eye-tracking measurements (main task) – Data analysis (main task) – Interpretation of results (main task) – Dissemination of findings through the writing of scientific articles (main task