Sort by
Refine Your Search
-
Bayesian approach (Lages, 2024). Techniques used: Computational modelling, Bayesian inference, sampling and simulation techniques, prior distributions and posterior predictive checks, model comparison
-
wild and domestic animal populations wildlife diseases and conservation network analysis of disease spread phylodynamics model-based statistical inference using Bayesian approaches vector biology
-
Sequential Monte Carlo Methods for Bayesian Inference in Complex Systems School of Electrical and Electronic Engineering PhD Research Project Self Funded Prof Lyudmila Mihaylova Application Deadline
-
guiding materials measurement experiments to acclerate learning the synthesis-process-structure-property relationship. Machine learning methods include, but are not limited to, Bayesian inference
-
nodes and chemical bonds as edges. Analysis these networks are important as they may provide AI-based approaches for drug discovery. This project will focus on representing and inferring chemical or
-
back at least as far as 1954 (Dowe, 2008a, sec. 1, pp549-550). Discussion of how to do this using the Bayesian information-theoretic minimum message length (MML) approach (Wallace and Boulton, 1968
-
Methods of balancing model complexity with goodness of fit include Akaike's information criterion (AIC), Schwarz's Bayesian information criterion (BIC), minimum description length (MDL) and minimum
-
the Faculty of Science. We will apply Bayesian approaches such as the information-theoretic minimum message length (MML) principle and other approaches to develop a path towards statistically-optimal algorithms
-
. Among the approaches used will be the Bayesian information-theoretic Minimum Message Length (MML) principle (Wallace and Boulton, 1968; Wallace and Dowe, 1999a; Wallace, 2005) References: Wallace, C.S
-
used will the information-theoretic Bayesian minimum message length (MML) principle. Student cohort PhD, possibly Master’s (Minor Thesis) or Honours URLs/references Chen, Li and Gao, Jiti and Vahid