Sort by
Refine Your Search
-
Listed
-
Category
-
Program
-
Employer
- CNRS
- Nature Careers
- Inria, the French national research institute for the digital sciences
- Université Grenoble Alpes
- Aix-Marseille Université
- CEA
- IRIT, Université de Toulouse
- Télécom Paris
- Université Claude Bernard Lyon 1
- Université Savoie Mont Blanc
- Université de Bordeaux / University of Bordeaux
- École nationale des ponts et chaussées
- American University of Paris;
- CEA-Saclay
- Ecole Centrale de Lyon
- Ecole Normale Supérieure de Lyon
- FRANCE ENERGIES MARINES
- IMT - Atlantique
- IMT - Institut Mines-Télécom
- IMT MINES ALES
- IMT Mines Ales
- IRISA
- Institut National Polytechnique de Toulouse
- Institut Neel
- Institut Pasteur
- Institut des Hautes Etudes Scientifiques
- Institut des Hautes Études Scientifiques
- Institut of Mathematics of Marseille
- LE STUDIUM LOIRE VALLEY INSTITUTE FOR ADVANCED STUDIES
- Laboratoire National de Métrologie et d'Essais - LNE
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), UMR CNRS/École Polytechnique,
- NIMES UNIVERSITE
- Nantes Université
- The American University of Paris
- Télécom SudParis
- UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE
- Universite de Montpellier
- Université Grenoble Alpes, laboratoire TIMC, équipe GMCAO
- Université Marie et Louis Pasteur
- Université Toulouse III Paul Sabatier
- Université d'Orléans
- Université de Caen Normandie
- Université de Lorraine
- Université de Montpellier
- Université de Pau et des Pays de l'Adour
- Université de Technologie de Belfort-Montbéliard
- Université de Toulouse
- université Strasbourg
- École Normale Supéireure
- 39 more »
- « less
-
Field
-
Inria, the French national research institute for the digital sciences | Saint Martin, Midi Pyrenees | France | 12 days ago
follows a phased algorithm: 1) generate an initial training set by uniformly sampling input points 2) (re)train the model on the trainng set 3) use feedback from the model’s performance to generate/augment
-
• Develop, consolidate, and optimize fMRI and EEG neurofeedback algorithms. • Design, integrate, and test standalone neurofeedback software (software suites for clinical environments). • Contribute
-
-luminosity phase of the LHC. The successful candidate will work in close collaboration with other members of the Particle Physics team, and with members of the Computing, Algorithms and Data team at L2IT
-
compatible with in vivo imaging still needs to be developed. In practice, the first part of this project will involve familiarizing the student with algorithms for measuring cell motility in traditional FF-OCT
-
learning, particularly in deep learning or related areas. No prior knowledge of cryptography is required. Expertise in optimization or efficient algorithm design will be considered an asset. Applications
-
automotive networks Explore and implement reinforcement learning algorithms for secure, real-time traffic scheduling and flow reconfiguration Conduct testbed-based evaluations using automotive-grade hardware
-
single needle, a robotic platform introduces complex motion control challenges that require the development of adaptive toolpath algorithm. This algorithm will ensure continuous and smooth deposition while
-
perturbations stochastiques, associées à des fonctionnelles définies sur des espaces fonctionnels de dimension infinie. L'étude se fera en reliant ces algorithmes avec des équations aux dérivées partielles
-
resources to carry out your assignments. YOUR ASSIGNMENTS: The internship will develop and implement scalable, high‑performance algorithms for transient Lindblad dynamics tailored to the multi‑level Rydberg
-
into refining computational strategies for large-scale molecular simulations in materials science and computational physics. The project will involve substantial numerical development, including algorithm design